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Simple algorithm to test for linking to Wilson loops in percolation
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A simple burning or epidemic type of algorithm is developed in order to test whether any loops in perco-
lation clusters link a fixed reference loop, a problem considered recently by Gliozzi et al. in the context of
gauge theory. We test our algorithm at criticality in both two dimensions, where the behavior agrees with a

theoretical prediction, and in three dimensions.
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I. INTRODUCTION

Recently, Gliozzi et al. [1,2] have studied percolation in
the context of gauge theory. They considered the question of
whether closed paths in three-dimensional (3D) percolation
clusters are linked topologically to given closed loops, the
so-called Wilson loops. Studying this problem for rectangu-
lar planar loops, and in comparison to percolation in three-
dimensional slabs which they relate to the problem of decon-
finement, the authors find a universal amplitude ratio. This
work provides an example where the percolation model pos-
sesses connections to fundamental problems in theoretical
particle physics.

Gliozzi et al.’s numerical results for rectangular loops of
dimensions R X T confirmed the expected behavior for p

#p. [3],

_  —P(R+T)-0RTp1/4 (i)
(W(R,T)) = Ce R \/—n(iT/R)’ (1)

where (W(R,T)) is the average probability that there is no
path in any cluster linked to the Wilson loop; C, P, and o
are constants that depend upon the percolation probability p;
and 7 is the Dedekind function 7(7)=¢"**II"_,(1-¢") with
g=e*™. When p <p,, one expects o=0 because the linking
probability should depend only upon the perimeter of the
loop, while for p > p,., the linking probability is expected to
decay exponentially with the area of the loop (o> 0). Taking
p somewhat above p., Gliozzi et al. found that the depen-
dence of o upon p behaves as

o=S(p-p)*, 2)

similar to the behavior of a surface tension, where v
~(.876 5 is the correlation-length exponent of 3D percola-
tion [4], and S is a constant. They also determined the per-
colation threshold p, for slabs of thickness € in the range
3-8. One expects ¢~ &(pg)~T, (pe—p.)~", where T, is a
constant, and indeed they find 1/(€+/o(p,)) ~T./ VS is a uni-
versal amplitude ratio with a value of about 1.50.

In this paper, we discuss two points related to the work of
Gliozzi er al.: (1) We describe an epidemic or burning [5]
type of algorithm that may be simpler than the algorithm
described by Gliozzi et al., and (2) we apply it to study the
linking probability exactly at p. (a point that Gliozzi et al.
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did not consider) for two-dimensional (2D) and 3D systems.
Note that Eq. (1) and its 2D analog are not necessarily ex-
pected to be valid at p..

II. ALGORITHM

Gliozzi et al. describe an algorithm that involves succes-
sive removal of dangling ends and reduction to an auxiliary
graph that represents the connections between clusters on
either side of the flat region enclosed by the loop. This graph
is used to determine whether a cluster is linked to the loop.

Here we describe a cluster burning type of algorithm that
accomplishes the same test. As in Ref. [1], we consider the
loop 7y to be on the dual lattice, so effectively the problem is
to find if there are clusters that simultaneously pass through
the plane 3 of vertical bonds enclosed by y and through
bonds in the same plane outside of y. We are thinking of a
simple cubic lattice to be specific.

To begin the process, all of the sites are set to the “unvis-
ited” state and bonds to the “undetermined” state. Then we
pick one of the (unvisited) sites S directly above 3, and label
that site as “visited” with an arbitrary index n. We check the
six bonds that emanate from S; the undetermined bonds are
made “occupied” with probability p and “vacant” otherwise.
For the bonds that are occupied, we check the adjacent site;
if that site is unvisited, we label it as visited (with a value of
the label described below) and put its coordinates on a queue
for future checking. After finishing checking all bonds con-
nected to the site being studied, we consider the next site on
the queue, continuing this process until the queue is empty.
This is the normal burning or epidemic type of algorithm to
identify a cluster connected to a site in bond percolation;
here we also decide whether a bond is occupied or not as we
go along. We repeat this process for all remaining unvisited
sites in the plane above X..

What we now do differently for the loop-linking problem
is that we assign an index n to each visited site in a cluster.
When we transverse one of the occupied bonds that inter-
sects 3, we increment n by one when going downward or
decrement it by one when going upwards. In this way, every
site of the cluster will be labeled by n,n+1 (if a path of the
growing cluster goes once through X)), n+2 (if a path of the
growing cluster winds twice through ), etc.

Now, if during the growing process a new bond is found
to connect two visited sites with different labels £, then the
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cluster must have wrapped around 7y and is therefore linked
to it.

An occupied bond of course will not connect to sites of
two different clusters, by definition, so therefore one does
not have to worry about interference between clusters in this
algorithm.

Here we have not dealt with the system boundaries. If
open boundaries are used, care must be taken so that the
boundary bonds are not mistaken for wraparounds. To elimi-
nate this problem and to lessen the effects of the boundary,
we considered periodic boundary conditions in all directions.
This makes the problem slightly different, because periodic
wraparounds through the Wilson loop will also contribute to
linking events; but if the lattice dimension L> R, this differ-
ence should not be too significant. Indeed, a moment’s re-
flection shows that is very unlikely that there will be wrap-
around without linking, since a cluster that wraps around the
lattice it is usually a ubiquitous one and most likely will link
the Wilson loop also.

The idea of adding a label to sites in percolation to test for
a crossing criterion has been used previously in relation to
wrapping a periodic system in a given direction [6,7].

III. LINKING IN TWO DIMENSIONS AT CRITICALITY

For the 2D system, the question that is studied is whether
there exists a closed path in a cluster that encircles one (but
not both) of two points on the dual lattice, separated by a
distance R. In this case we can make a simple theoretical
prediction for (W(R)), since the condition of a path not en-
circling either of the two points individually is equivalent to
the existence of a continuous path between the two points on
the dual lattice—that is, a cluster that connects the two
points. The density drop off from any point on a given clus-
ter goes as ¢, where D is the fractal dimension and d is the
spatial (Euclidean) dimension. To find the probability that
two given points are connected, the above factor must be
multiplied by the probability that the size of a cluster con-
nected to one of the points is at least large enough to reach
the other point. At criticality, the probability that the number
of sites connected to a point is equal to or greater than s is
given by P_,~s>"", where 7 is the size distribution expo-
nent, and this implies that the probability that the radius is
greater than or equal to r is given by P—,~ r??=7, since s
~rP. Then, by the hyperscaling relation d/D=71—-1, we have
P—,~rP=4 Thus, the net probability that two points sepa-
rated by r are connected by a cluster at p, is given by P(r)
~ P-4 implying that

(W(R)) ~ R14D) = exp[-2(d - D)In R]. (3)

In d=2,D=91/48 and 2(d-D) =~ 0.208.

We carried out simulations for this system using the algo-
rithm described above. We considered bond percolation on
the square lattice at p=p.=1/2, on a system with a square
boundary of dimensions 1024 X 1024, and considered sepa-
rations of the two points ranging between 10 and 100. Figure
1 shows the results for a plot of In W vs In R, for a relatively
small number of runs (100 000 each). The slope is about
—0.22, consistent with the theoretical prediction above. To
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FIG. 1. (Color online) Logarithm of (W(R)) (=the probability
that no cluster encircles just one of the two points) vs the logarithm
of the points’ separation R.

make this work more precise, one would have to consider
different size systems to study the finite-size corrections, and
perhaps also consider systems with open boundary condi-
tions for comparison.

IV. LINKING IN THREE DIMENSIONS AT CRITICALITY

For the 3D problem, we consider bond percolation on the
simple cubic lattice, and take p=0.248 8126, which is an
estimate for p,. believed to be within about 5X 1077 of
the actual value [8]. We consider a lattice of size
128 X 128 X 128, and square Wilson loops containing R X R
vertical bonds, with R=5, 11, 21,..., 111. Between 300 000
(smaller R) and 13 000 000 samples (larger R) were gener-
ated for the different values of R.

In Fig. 2, the lower curve represents In{W(R,R)) as a
function of R. The data shows quite linear behavior up to
R=111. Evidently, the perimeter term proportional to P in
Eq. (1) dominates; as expected, there is no term proportional
to the area.

We do not see evidence of the R"* term in Eq. (1). The
data marked by vcircles in Fig. 2 represents
In(R"Y*(W(R,R))) vs R, and the fit to a straight line is much
worse than for the case without the factor of R™"*. This
factor would show up as a logarithmic term in the plot of
Fig. 2.
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FIG. 2. (Color online) 3D data. Upper (O): In(R""*(W(R,R)))
vs R. Lower (©): In{(W(R,R)) vs R, which shows a good fit to a
straight line for 5<R=<111. The equation of the linear fit is given.
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FIG. 3. (Color online) In W+0.0765 R vs R for the 3D data,
showing deviations from simple exponential behavior. Error bars
show two standard deviations of statistical error.

To check further for logarithmic terms, we plot in Fig. 3
the quantity In W+0.0765 R, where the constant 0.0765 was
adjusted to get the best horizontal region in the center, along
with general monotonic behavior. We see two corrections to
the straight line: for small R, there is a small decrease, which
could be fit to a very small logarithmic term, =—0.03 In R,
much smaller than the —(1/4)In R term that would appear for
p>p, according to Eq. (1). The coefficient is so small that
the existence of a logarithmic term seems unlikely.

For large R, the deviations from linearity are also small,
which is surprising given that we went up to R=111 in a
system of size L=128. When R approaches L it should be
more difficult to create a linking cluster, because there is a
smaller region external to the loop (also taking into account
the periodic boundary conditions), but this may be balanced
by the increase in vertical wraparounds (which our algorithm
takes to be linkages) through the periodic boundary condi-
tions. Note that at R=111,W=0.000 286 17—that is, only
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3434 of the 12 000 000 samples did not have a linkage to the
Wilson loop.

Thus, ignoring the possible small logarithmic term, the
data for three dimension (in the central range) yields In W
=-0.0765 R+0.25, implying

(W(R.R)) = 1.28¢70038220) (4)

or P=0.0382 for bond percolation on the simple cubic lattice
at criticality. Note the linear fit for W above is somewhat
different than that given in Fig. 2, which is just a simple
linear fit through all the data points.

V. CONCLUSIONS

We see that a simple burning type of algorithm can be
constructed to find the loop-linking probability studied by
Gliozzi et al. We have checked it in two dimensions at the
critical threshold, where the linking probability is known ex-
actly by virtue of its being dual to the two-point probability.
Of course, in two dimensions one can easily simulate the
dual problem of connecting the two points. However, in three
dimensions, where a dual-lattice procedure would be much
more complicated, a direct determination is preferable and
the algorithm presented here is efficient and simple. For
three dimensions, we find a simple exponential relation be-
tween (W(R,R)) and R reflecting a perimeter effect; there is
no evidence of a logarithmic correction implied by the R'/*
term in Eq. (1) (which is not necessarily expected to be valid
at p,) or as suggested by the behavior in two dimensions.
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